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Rosenbloom-Tsfasman Metric

Codes with the Rosenbloom-Tsfasman Metric



Rosenbloom-Tsfasman Metric

Matn,s(Fq) denotes the linear space of all matrices with n rows
and s columns with entries from a finite field Fq of q elements.

A linear code is a subspace of Matn,s(Fq).
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Rosenbloom-Tsfasman Metric

Define ρ on Matn,s(Fq)

Let n = 1 and ω = (ξ1, ξ2, . . . , ξs) ∈ Mat1,s(Fq). Then, we put
ρ(0) = 0 and

ρ(ω) = max{i | ξi 6= 0} (1)

for ω 6= 0.

Ex: ρ(1, 0, 0, 1, 0) = 4.
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Rosenbloom-Tsfasman Metric

Now let Ω = (ω1, . . . , ωn)T ∈ Matn,s(Fq), ωj ∈ Mat1,s(Fq),
1 ≤ j ≤ n, and (·)T denotes the transpose of a matrix. Then, we
put

ρ(Ω) =
n∑

j=1

ρ(ωj) (2)

Ex:

ρ


0 0 1 0 1
1 1 0 0 0
0 0 1 1 0
1 0 0 0 0

 = 5 + 2 + 4 + 1 = 12.
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Weight Distribution

For a given linear code C ⊂ Matn,s(Fq) the following set of
nonnegative integers

wr (C ) = |{Ω ∈ C | ρ(Ω) = r}|, 0 ≤ r ≤ ns (3)

is called the ρ weight spectrum of the code C .



Weight Enumerator

Define the ρ weight enumerator by

W (C |z) =
ns∑
r=0

wr (C )z r =
∑
Ω∈C

zρ(Ω) (4)

Note that if s = 1, it reduces to the Hamming weight enumerator.
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Inner-Product

Introduce the following innerproduct on Matn,s(Fq). At first, let
n = 1 and ω1 = (ξ′1, . . . , ξ

′
s), ω2 = (ξ′′1 , . . . , ξ

′′
s ) ∈ Mat1,s(Fq).

Then we put

〈ω1, ω2〉 = 〈ω2, ω1〉 =
s∑

i=1

ξ′iξ
′′
s+1−i (5)

Ex: q = 5,

〈(1, 2, 1, 3, 4), (2, 1, 4, 3, 4)〉 = 1(4) + 2(3) + 1(4) + 3(1) + 4(2) = 3.

Note that this is a non-standard inner-product on rows.
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Inner-Product

Now, let
Ωi = (ω

(1)
i , . . . , ω

(n)
i )T ∈ Matn,s(Fq), i = 1, 2, ω

(j)
i ∈ Mat1,s(Fq),

1 ≤ j ≤ n. Then we put

〈Ω1,Ω2〉 = 〈Ω2,Ω1〉 =
n∑

j=1

〈ω(j)
1 , ω

(j)
2 〉 (6)



Orthogonal

Let C ⊂ Matn,s(Fq). C⊥ ⊂ Matn,s(Fq) is defined by

C⊥ = {Ω2 ∈ Matn,s(Fq) | 〈Ω2,Ω1〉 = 0 for all Ω1 ∈ C}. (7)

C⊥ is a linear code, and (C⊥)⊥ = C .

We have

d + d⊥ = ns, |C ||C⊥| = qns , |C | = qd , |C⊥| = qns−d , (8)

where d is the dimension of C and d⊥ is the dimension of C⊥.
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Examples

q = 2, n = s = 2

C1 = {
(

0 0
0 0

)
,

(
1 0
1 0

)
}, C2 = {

(
0 0
0 0

)
,

(
0 0
0 1

)
}

(9)

Both codes have ρ weight enumerator

1 + z2 (10)
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Weight Enumerators

The ρ weight enumerator for C⊥1 and C⊥2 turns out to be different:

W (C⊥1 | z) = 1 + 4z4 + 2z + z2

W (C⊥2 | z) = 1 + 2z4 + z3 + 3z2 + z

Therefore, the ρ weight enumerators cannot be related by a
MacWilliams type relation.
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Is it a problem with the inner-product

We shall compare the first innerproduct with the common one:

[ω1, ω2] =
s∑

i=1

ξ′iξ
′′
i . (11)

Consider two linear codes C1 and C2 ⊂ Mat1,4(F2),

C1 = {0000, 1100, 1001, 0101}, C2 = {0000, 0100, 0001, 0101}.

Notice that these codes have the same ρ weight enumerators:

W (Ci | z) = W (C⊥i | z) = 1 + z2 + 2z4, i = 1, 2. (12)
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W (C ∗1 | Z ) = 1 + z3 + 2z4, W (C ∗2 | z) = 1 + z + 2z3. (13)
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cannot be related by a MacWilliams-type identity with the
common inner-product.

It is not a problem with the inner-product but rather with the
weights.
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T -Weight Enumerator

T (C | Z1, . . . ,Zn) =
∑
Ω∈C

Υ(Ω | Z1, . . . ,Zn) (14)

where Υ(Ω) = z
(1)
a1 z

(2)
a2 . . . z

(n)
an and ρ(ωi ) = ai , 1 ≤ i ≤ n.

The Zi are n complex vectors with s + 1 components,

Zj = (z
(j)
0 , . . . , z

(j)
s ).
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T -Weight Enumerator

Example:

Υ


1 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

 = z1
3 z2

4 z3
1 z4

2



H-Weight Enumerator

H(C | Z ) = T (C | Z ,Z , . . . ,Z ).

In the previous example the monomial becomes z3z4z1z2.

Notice that the first enumerator is a polynomial of degree at most

one in each of n(s + 1) variables z
(j)
i , 0 ≤ i ≤ s 1 ≤ j ≤ n, while

the second enumerator has degree at most n in each of s + 1
variables zi , 0 ≤ i ≤ s.
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Linear Transformation

Introduce a linear transformation

Θs : Cs+1 → Cs+1

by setting

Z ′ = ΘsZ ,

where

z ′0 = z0 + (q − 1)z1 + q(q − 1) + q2(q − 1)z3+

· · ·+ qs−2(q − 1)zs−1 + qs−1(q − 1)zs



Linear Transformation

z ′1 = z0 + (q − 1)z1 + q(q − 1) + q2(q − 1)z3+

· · ·+ qs−2(q − 1)zs−1 +−qs−1zs

...

z ′s−2 = z0 + (q − 1)z1 + q(q − 1)− q2z3

z ′s−1 = z0 + (q − 1)z1 − qz2

z ′s = z0 − z1



Linear Transformation

We assume that Z = (z0, z1, z2, . . . ) is an infinite sequence with
zi = 0 for i > s.
Thus the s + 1 by s + 1 matrix Θs = ||θlk ||, 0 ≤ l , k ≤ s, has the
following entries



Linear Transformation

θlk =


1 if l = 0,

ql−1(q − 1) if 0 < l ≤ s − k,
−ql−1 if l + k = s + 1,

0 if l + k > s + 1.
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1 q − 1 −q
1 −1 0
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MacWilliams Relations

Theorem
The T -enumerators of mutually dual linear codes C ,
C⊥ ⊂ Matn,s(Fq) are related by

T (C⊥ | Z1, . . . ,Zn) =
1

|C |
T (C | ΘsZ1, . . . ,ΘsZn).



MacWilliams Relations

Theorem
The H-enumerator of mutually dual linear codes C ,
C⊥ ⊂ Matn,s(Fq) are related by

H(C⊥ |Z ) =
1

|C |
H(C | ΘsZ )



MacWilliams Relations

Hence by expanding the amount of information in the weight
enumerator MacWilliams relations can be found!



Singleton Bound

The minimum weight of a code C is given by

ρ(C ) = min{ρ(Ω,Ω′) | Ω,Ω′ ∈ C , Ω 6= Ω′}.

If the code is linear (i.e. A is a finite ring and the code is a
submodule) then ρ(C ) = min{ρ(Ω) | Ω ∈ C , } where
ρ(Ω) = ρ(Ω, 0).
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Singleton Bound

Theorem
Let A be any finite alphabet with q elements and let
C ⊂ Matn,s(A), be an arbitrary code, then

|C | ≤ qn−d+1.

Proof.
Mark the first d − 1 positions lexicographically. Two elements of C
never coincide in all other positions since otherwise the distance
between them would be less than d . Hence |C | ≤ qn−d+1.
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Singleton Bound

Corollary

Let C ⊂ Matn,s(A), where |A| = q, be an arbitrary code consisting
of qk , 0 ≤ k ≤ ns, points. Then

ρ(C ) ≤ ns − k + 1.

Naturally, we define a code meeting this bound as a Maximum
Distance Separable Code with respect to the ρ metric.
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MDS Codes

Theorem
(Skriganov) If C is a linear MDS code
in Matn,s(Fq), then C⊥ is also an MDS code.



MDR Bound

Theorem
If C is a linear code in Matn,s(Zk) of rank h, then

ρ(C ) ≤ ns − h + 1.

Codes meeting this bound are called MDR codes.
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MDR Codes

Theorem
Let C1,C2, . . . ,Cr be linear codes in Matn,s(Zk1), . . . ,Matn,s(Zkr ),
respectively, where k1, . . . , kr are positive integers with
gcd(ki , kj) = 1 for i 6= j . If Ci is an MDR code for all i , then
C = CRT(C1,C2, . . . ,Cr ) is an MDR code.



Uniform Distributions

Let U denote the interval [0, 1) and

∆M
A = [

m1

ka1
,

m1 + 1

ka1
) . . . [

mn

kan
,

mn + 1

kan
) ⊂ Un

an elementary box, where M = (m1, . . . ,mn) and A = (a1, . . . , an).

Definition
Given an integer 0 ≤ h ≤ n, a subset D ⊂ Un consisting of kh

points is called an optimum [ns, h]s distribution in base k if each
elementary box ∆M

A of volume k−h contains exactly one point of D.
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Uniform Distributions

For a point X in Qn(ks) define the following matrix which is an
element of Matn,s(Zk):

Ω〈X 〉 = (ω(x1), ω(x2), . . . , ω(xn))T

where
ω〈x〉 = (ξ1(x), ξ2(x), . . . , ξs(x))

and x =
∑s

i=1 ξi (x)k i−s−1.



Uniform Distributions

Theorem
Let C be an optimum distribution in Qn(ks) for any k and C its
corresponding code then the following are equivalent:

I D is an optimum [ns, λ]s distribution in base k

I C is an MDS code in the ρ metric in Matn,s(Zk).



Z2Z4Codes

Codes over Z2Z4 and their Gray Map



Delsarte

Delsarte defines additive codes as subgroups of the underlying
abelian group in a translation association scheme.

For the binary Hamming scheme, the only structures for the
abelian group are those of the form Zα2 × Zβ4 , with α + 2β = n.

Thus, the subgroups C of Zα2 × Zβ4 are the only additive codes in a
binary Hamming scheme.
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Gray Map

Φ : Zα2 × Zβ4 −→ Zn
2

where n = α + 2β.

Φ(x , y) = (x , φ(y1), . . . , φ(yβ))

for any x ∈ Zα2 and any y = (y1, . . . , yβ) ∈ Zβ4 , where
φ : Z4 −→ Z2

2 is the usual Gray map.

The map Φ is an isometry which transforms Lee distances in
Zα2 × Zβ4 to Hamming distances in Zα+2β

2 .
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Weights

Denote by wtH(v1) the Hamming weight of v1 ∈ Zα2 and by

wtL(v2) the Lee weight of v2 ∈ Zβ4 .

For a vector v = (v1, v2) ∈ Zα2 × Zβ4 , define the weight of v,
denoted by wt(v), as wtH(v1) + wtL(v2), or equivalently, the
Hamming weight of Φ(v).
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Generator Matrix

The generator matrix for a Z2Z4-additive code C of type
(α, β; γ, δ;κ):

GS =

 Iκ T ′ 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 S ′ S R Iδ

 ,

where T ′,T1,T2,R, S
′ are matrices over Z2 and S is a matrix over

Z4.



Inner-Product

The following inner product is defined for any two vectors
u, v ∈ Zα2 × Zβ4 :

〈u, v〉 = 2(
α∑

i=1

uivi ) +

α+β∑
j=α+1

ujvj ∈ Z4.

The additive dual code of C, denoted by C⊥, is defined in the
standard way

C⊥ = {v ∈ Zα2 × Zβ4 | 〈u, v〉 = 0 for all u ∈ C}.
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MacWilliams Relations

Define
WL(x , y) =

∑
c∈C

xn−wtL(c)ywtL(c).

Theorem
Let C be a Z2Z4 code, then

WLC⊥(x , y) =
1

|C |
WLC (x + y , x − y).
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Bounds

Theorem
Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ), then

d(C)− 1

2
6
α

2
+ β − γ

2
− δ; (15)⌊

d (C)− 1

2

⌋
6 α + β − γ − δ. (16)



Separable

Let C be a Z2Z4-additive code. If C = CX × CY , then C is called
separable.

Theorem
If C is a Z2Z4-additive code which is separable, then the minimum
distance is given by

d (C) = min {d (CX ) , d (CY )} .
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MDS

We say that a Z2Z4-additive code C is maximum distance
separable (MDS) if d (C) meets the bound given in The usual
Singleton bound for a code C of length n over an alphabet of size
q is given by

d(C) ≤ n − logq |C|+ 1.

.

In the first case, we say that C is MDS with respect to the
Singleton bound, briefly MDSS. If it meets the second bound, C is
MDS with respect to the rank bound, briefly MDSR.
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MDSS

Theorem
Let C be an MDSS Z2Z4-additive code of type (α, β; γ, δ;κ) such
that 1 < |C| < 2α+2β. Then C is either

(i) the repetition code of type (α, β; 1, 0;κ) and minimum
distance d(C) = α + 2β, where κ = 1 if α > 0 and κ = 0
otherwise; or

(ii) the even code with minimum distance d(C) = 2 and type
(α, β;α− 1, β;α− 1) if α > 0, or type (0, β; 1, β − 1; 0)
otherwise.



MDSR

Theorem
Let C be an MDSR Z2Z4-additive code of type (α, β; γ, δ;κ) such
that 1 < |C| < 2α+2β. Then, either

(i) C is the repetition code as in (i) of Theorem 3 with α ≤ 1; or

(ii) C is of type (α, β; γ, α + β − γ − 1;α), where α ≤ 1 and
d(C) = 4− α ∈ {3, 4}; or

(iii) C is of type (α, β; γ, α + β − γ;α), where α ≤ 1 and
d(C) ≤ 2− α ∈ {1, 2}.


