Non-Standard Coding Theory

Steven T. Dougherty

July 3, 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Codes with the Rosenbloom-Tsfasman Metric

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $Mat_{n,s}(\mathbb{F}_q)$ denotes the linear space of all matrices with *n* rows and *s* columns with entries from a finite field \mathbb{F}_q of *q* elements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $Mat_{n,s}(\mathbb{F}_q)$ denotes the linear space of all matrices with *n* rows and *s* columns with entries from a finite field \mathbb{F}_q of *q* elements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A linear code is a subspace of $Mat_{n,s}(\mathbb{F}_q)$.

Define ρ on $Mat_{n,s}(\mathbb{F}_q)$

Define ρ on $Mat_{n,s}(\mathbb{F}_q)$ Let n = 1 and $\omega = (\xi_1, \xi_2, \dots, \xi_s) \in Mat_{1,s}(\mathbb{F}_q)$. Then, we put $\rho(0) = 0$ and $\rho(\omega) = max\{i \mid \xi_i \neq 0\}$ (1)

for $\omega \neq 0$.

Define
$$\rho$$
 on $Mat_{n,s}(\mathbb{F}_q)$
Let $n = 1$ and $\omega = (\xi_1, \xi_2, \dots, \xi_s) \in Mat_{1,s}(\mathbb{F}_q)$. Then, we put
 $\rho(0) = 0$ and
 $\rho(\omega) = max\{i \mid \xi_i \neq 0\}$ (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

for $\omega \neq 0$.

Ex: $\rho(1, 0, 0, 1, 0) = 4.$

Now let $\Omega = (\omega_1, \ldots, \omega_n)^T \in Mat_{n,s}(\mathbb{F}_q), \ \omega_j \in Mat_{1,s}(\mathbb{F}_q), \ 1 \leq j \leq n, \ \text{and} \ (\cdot)^T$ denotes the transpose of a matrix. Then, we put

$$\rho(\Omega) = \sum_{j=1}^{n} \rho(\omega_j)$$
(2)

Now let $\Omega = (\omega_1, \ldots, \omega_n)^T \in Mat_{n,s}(\mathbb{F}_q), \ \omega_j \in Mat_{1,s}(\mathbb{F}_q), \ 1 \leq j \leq n, \ \text{and} \ (\cdot)^T$ denotes the transpose of a matrix. Then, we put

$$\rho(\Omega) = \sum_{j=1}^{n} \rho(\omega_j)$$
(2)

Ex:

$$\rho \left(\begin{array}{rrrr} 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{array} \right) = 5 + 2 + 4 + 1 = 12.$$

Weight Distribution

For a given linear code $C \subset Mat_{n,s}(\mathbb{F}_q)$ the following set of nonnegative integers

$$w_r(C) = |\{\Omega \in C \mid \rho(\Omega) = r\}|, \ 0 \le r \le ns$$
(3)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is called the ρ weight spectrum of the code C.

Weight Enumerator

Define the ρ weight enumerator by

$$W(C|z) = \sum_{r=0}^{ns} w_r(C) z^r = \sum_{\Omega \in C} z^{\rho(\Omega)}$$
(4)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Weight Enumerator

Define the ρ weight enumerator by

$$W(C|z) = \sum_{r=0}^{ns} w_r(C) z^r = \sum_{\Omega \in C} z^{\rho(\Omega)}$$
(4)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Note that if s = 1, it reduces to the Hamming weight enumerator.

Introduce the following innerproduct on $Mat_{n,s}(\mathbb{F}_q)$. At first, let n = 1 and $\omega_1 = (\xi'_1, \ldots, \xi'_s)$, $\omega_2 = (\xi''_1, \ldots, \xi''_s) \in Mat_{1,s}(\mathbb{F}_q)$. Then we put

$$\langle \omega_1, \omega_2 \rangle = \langle \omega_2, \omega_1 \rangle = \sum_{i=1}^{s} \xi'_i \xi''_{s+1-i}$$
(5)

Introduce the following innerproduct on $Mat_{n,s}(\mathbb{F}_q)$. At first, let n = 1 and $\omega_1 = (\xi'_1, \ldots, \xi'_s)$, $\omega_2 = (\xi''_1, \ldots, \xi''_s) \in Mat_{1,s}(\mathbb{F}_q)$. Then we put

$$\langle \omega_1, \omega_2 \rangle = \langle \omega_2, \omega_1 \rangle = \sum_{i=1}^s \xi_i' \xi_{s+1-i}''$$
(5)

Ex: q = 5, $\langle (1, 2, 1, 3, 4), (2, 1, 4, 3, 4) \rangle = 1(4) + 2(3) + 1(4) + 3(1) + 4(2) = 3.$

Introduce the following innerproduct on $Mat_{n,s}(\mathbb{F}_q)$. At first, let n = 1 and $\omega_1 = (\xi'_1, \ldots, \xi'_s)$, $\omega_2 = (\xi''_1, \ldots, \xi''_s) \in Mat_{1,s}(\mathbb{F}_q)$. Then we put

$$\langle \omega_1, \omega_2 \rangle = \langle \omega_2, \omega_1 \rangle = \sum_{i=1}^s \xi_i' \xi_{s+1-i}''$$
(5)

Ex: q = 5, $\langle (1, 2, 1, 3, 4), (2, 1, 4, 3, 4) \rangle = 1(4) + 2(3) + 1(4) + 3(1) + 4(2) = 3.$

Note that this is a non-standard inner-product on rows.

Now, let

$$\Omega_i = (\omega_i^{(1)}, \ldots, \omega_i^{(n)})^T \in Mat_{n,s}(\mathbb{F}_q), i = 1, 2, \omega_i^{(j)} \in Mat_{1,s}(\mathbb{F}_q),$$

 $1 \leq j \leq n$. Then we put

$$\langle \Omega_1, \Omega_2 \rangle = \langle \Omega_2, \Omega_1 \rangle = \sum_{j=1}^n \langle \omega_1^{(j)}, \omega_2^{(j)} \rangle$$
 (6)

Orthogonal

Let
$$C \subset Mat_{n,s}(\mathbb{F}_q)$$
. $C^{\perp} \subset Mat_{n,s}(\mathbb{F}_q)$ is defined by
 $C^{\perp} = \{\Omega_2 \in Mat_{n,s}(\mathbb{F}_q) \mid \langle \Omega_2, \Omega_1 \rangle = 0 \text{ for all } \Omega_1 \in C\}.$ (7)

Orthogonal

Let
$$C \subset Mat_{n,s}(\mathbb{F}_q)$$
. $C^{\perp} \subset Mat_{n,s}(\mathbb{F}_q)$ is defined by
 $C^{\perp} = \{\Omega_2 \in Mat_{n,s}(\mathbb{F}_q) \mid \langle \Omega_2, \Omega_1 \rangle = 0 \text{ for all } \Omega_1 \in C\}.$ (7)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

 C^{\perp} is a linear code, and $(C^{\perp})^{\perp} = C$.

Orthogonal

Let
$$C \subset Mat_{n,s}(\mathbb{F}_q)$$
. $C^{\perp} \subset Mat_{n,s}(\mathbb{F}_q)$ is defined by
 $C^{\perp} = \{\Omega_2 \in Mat_{n,s}(\mathbb{F}_q) \mid \langle \Omega_2, \Omega_1 \rangle = 0 \text{ for all } \Omega_1 \in C\}.$ (7)

$$C^{\perp}$$
 is a linear code, and $(C^{\perp})^{\perp} = C$.

We have

$$d + d^{\perp} = ns, \ |C||C^{\perp}| = q^{ns}, \ |C| = q^{d}, \ |C^{\perp}| = q^{ns-d},$$
 (8)

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

where d is the dimension of C and d^{\perp} is the dimension of C^{\perp} .

Examples

$$q = 2, n = s = 2$$

<□ > < @ > < E > < E > E のQ @

Examples

$$q = 2, n = s = 2$$

$$C_1 = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \}, \ C_2 = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$
(9)

Examples

$$q = 2, n = s = 2$$

$$C_1 = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \}, \ C_2 = \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \}$$
(9)

Both codes have ρ weight enumerator

$$1 + z^2$$
 (10)

Duals

$$\begin{array}{rcl} C_{1}^{\perp} & = & \{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right), \\ & & \left(\begin{array}{cc} 0 & 1 \\ 1 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array} \right) \} \end{array}$$

Duals

$$\begin{array}{rcl} C_{1}^{\perp} & = & \{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \\ & & \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \} \end{array}$$

$$\begin{array}{rcl} C_2^{\perp} & = & \{ \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \\ & & \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \} \end{array}$$

Weight Enumerators

The ρ weight enumerator for C_1^{\perp} and C_2^{\perp} turns out to be different:

$$W(C_1^{\perp} \mid z) = 1 + 4z^4 + 2z + z^2$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Weight Enumerators

The ρ weight enumerator for C_1^{\perp} and C_2^{\perp} turns out to be different:

$$W(C_1^{\perp} \mid z) = 1 + 4z^4 + 2z + z^2$$

$$W(C_2^{\perp} \mid z) = 1 + 2z^4 + z^3 + 3z^2 + z$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Weight Enumerators

The ρ weight enumerator for C_1^{\perp} and C_2^{\perp} turns out to be different:

$$W(C_1^{\perp} \mid z) = 1 + 4z^4 + 2z + z^2$$

$$W(C_2^{\perp} \mid z) = 1 + 2z^4 + z^3 + 3z^2 + z$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Therefore, the ρ weight enumerators cannot be related by a MacWilliams type relation.

We shall compare the first innerproduct with the common one:

$$[\omega_1, \omega_2] = \sum_{i=1}^{s} \xi'_i \xi''_i.$$
(11)

(ロ)、(型)、(E)、(E)、 E) の(の)

We shall compare the first innerproduct with the common one:

$$[\omega_1, \omega_2] = \sum_{i=1}^{s} \xi_i' \xi_i''.$$
(11)

Consider two linear codes C_1 and $C_2 \subset Mat_{1,4}(\mathbb{F}_2)$,

 $C_1 = \{0000, 1100, 1001, 0101\}, \ C_2 = \{0000, 0100, 0001, 0101\}.$

We shall compare the first innerproduct with the common one:

$$[\omega_1, \omega_2] = \sum_{i=1}^{s} \xi_i' \xi_i''.$$
(11)

Consider two linear codes C_1 and $C_2 \subset Mat_{1,4}(\mathbb{F}_2)$,

 $C_1 = \{0000, 1100, 1001, 0101\}, \ C_2 = \{0000, 0100, 0001, 0101\}.$

Notice that these codes have the same ρ weight enumerators:

$$W(C_i \mid z) = W(C_i^{\perp} \mid z) = 1 + z^2 + 2z^4, \ i = 1, 2.$$
 (12)

Denote by C_1^* and C_2^* codes dual to C_1 and C_2 with respect to the common inner product. We have

 $C_1^* = \{0000, 0010, 1111, 1101\}$

Denote by C_1^* and C_2^* codes dual to C_1 and C_2 with respect to the common inner product. We have

 $C_1^* = \{0000, 0010, 1111, 1101\}$

 $C_2^* = \{0000, 0010, 1000, 1010\}$

Denote by C_1^* and C_2^* codes dual to C_1 and C_2 with respect to the common inner product. We have

 $C_1^* = \{0000, 0010, 1111, 1101\}$

$$C_2^* = \{0000, 0010, 1000, 1010\}$$

The ρ weight enumerators are different:

$$W(C_1^* \mid Z) = 1 + z^3 + 2z^4, \ W(C_2^* \mid z) = 1 + z + 2z^3.$$
 (13)

Therefore, the ρ weight enumerators $W(C \mid z)$ and $W(C^* \mid z)$ cannot be related by a MacWilliams-type identity with the common inner-product.

Therefore, the ρ weight enumerators $W(C \mid z)$ and $W(C^* \mid z)$ cannot be related by a MacWilliams-type identity with the common inner-product.

It is not a problem with the inner-product but rather with the weights.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

T-Weight Enumerator

$$T(C \mid Z_1, \dots, Z_n) = \sum_{\Omega \in C} \Upsilon(\Omega \mid Z_1, \dots, Z_n)$$
(14)
where $\Upsilon(\Omega) = z_{a_1}^{(1)} z_{a_2}^{(2)} \dots z_{a_n}^{(n)} \text{ and } \rho(\omega_i) = a_i, 1 \le i \le n.$

<□ > < @ > < E > < E > E のQ @

T-Weight Enumerator

$$T(C \mid Z_1, \dots, Z_n) = \sum_{\Omega \in C} \Upsilon(\Omega \mid Z_1, \dots, Z_n)$$
(14)
where $\Upsilon(\Omega) = z_{a_1}^{(1)} z_{a_2}^{(2)} \dots z_{a_n}^{(n)}$ and $\rho(\omega_i) = a_i, 1 \le i \le n$.
The Z_i are *n* complex vectors with $s + 1$ components,

Т $Z_j = (z_0^{(j)}, \ldots, z_s^{(j)}).$

T-Weight Enumerator

Example:

$$\Upsilon \left(\begin{array}{rrrr} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{array} \right) = z_3^1 z_4^2 z_1^3 z_2^4$$

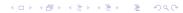
H-Weight Enumerator

$H(C \mid Z) = T(C \mid Z, Z, \ldots, Z).$

H-Weight Enumerator

$H(C \mid Z) = T(C \mid Z, Z, \ldots, Z).$

In the previous example the monomial becomes $z_3z_4z_1z_2$.



H-Weight Enumerator

$H(C \mid Z) = T(C \mid Z, Z, \ldots, Z).$

In the previous example the monomial becomes $z_3z_4z_1z_2$.

Notice that the first enumerator is a polynomial of degree at most one in each of n(s + 1) variables $z_i^{(j)}$, $0 \le i \le s$ $1 \le j \le n$, while the second enumerator has degree at most n in each of s + 1variables z_i , $0 \le i \le s$.

Introduce a linear transformation

$$\Theta_s: \mathbb{C}^{s+1} \to \mathbb{C}^{s+1}$$

by setting

$$Z'=\Theta_{s}Z,$$

where

$$egin{aligned} &z_0' = z_0 + (q-1)z_1 + q(q-1) + q^2(q-1)z_3 + \ &\cdots + q^{s-2}(q-1)z_{s-1} + q^{s-1}(q-1)z_s \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

$$egin{aligned} &z_1' = z_0 + (q-1)z_1 + q(q-1) + q^2(q-1)z_3 + \ & \cdots + q^{s-2}(q-1)z_{s-1} + -q^{s-1}z_s \end{aligned}$$

...

$$egin{aligned} &z_{s-2}' = z_0 + (q-1)z_1 + q(q-1) - q^2 z_3 \ &z_{s-1}' = z_0 + (q-1)z_1 - q z_2 \ &z_s' = z_0 - z_1 \end{aligned}$$

We assume that $Z = (z_0, z_1, z_2, ...)$ is an infinite sequence with $z_i = 0$ for i > s. Thus the s + 1 by s + 1 matrix $\Theta_s = ||\theta_{lk}||$, $0 \le l, k \le s$, has the following entries

$$heta_{lk} = \left\{ egin{array}{cccc} 1 & ext{if} & l=0, \ q^{l-1}(q-1) & ext{if} & 0 < l \leq s-k, \ -q^{l-1} & ext{if} & l+k=s+1, \ 0 & ext{if} & l+k>s+1. \end{array}
ight.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$heta_{lk} = \left\{egin{array}{cccc} 1 & ext{if} & l=0, \ q^{l-1}(q-1) & ext{if} & 0 < l \leq s-k, \ -q^{l-1} & ext{if} & l+k=s+1, \ 0 & ext{if} & l+k>s+1. \ 0 & ext{if} & l+k>s+1. \end{array}
ight. \ \Theta_1 = \left(egin{array}{ccccc} 1 & q-1 \ 1 & -1 \end{array}
ight)$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$heta_{lk} = \left\{ egin{array}{cccc} 1 & ext{if} & l=0, \ q^{l-1}(q-1) & ext{if} & 0 < l \leq s-k, \ -q^{l-1} & ext{if} & l+k=s+1, \ 0 & ext{if} & l+k>s+1. \ 0 & ext{if} & l+k>s+1. \end{array}
ight. \ \Theta_1 = \left(egin{array}{cccc} 1 & q-1 \ 1 & -1 \end{array}
ight)$$

$$\Theta_2=\left(egin{array}{cccc} 1 & q-1 & q(q-1) \ 1 & q-1 & -q \ 1 & -1 & 0 \end{array}
ight)$$

<□ > < @ > < E > < E > E のQ @

$$\theta_{lk} = \begin{cases} 1 & \text{if } l = 0, \\ q^{l-1}(q-1) & \text{if } 0 < l \le s - k, \\ -q^{l-1} & \text{if } l+k = s+1, \\ 0 & \text{if } l+k > s+1. \end{cases}$$
$$\Theta_1 = \begin{pmatrix} 1 & q-1 \\ 1 & -1 \end{pmatrix}$$
$$\Theta_2 = \begin{pmatrix} 1 & q-1 & q(q-1) \\ 1 & q-1 & -q \\ 1 & -1 & 0 \end{pmatrix}$$
$$\Theta_3 = \begin{pmatrix} 1 & q-1 & q(q-1) & q^2(q-1) \\ 1 & q-1 & q(q-1) & -q^2 \\ 1 & q-1 & -q & 0 \\ 1 & -1 & 0 & 0 \end{pmatrix}$$

MacWilliams Relations

Theorem

The T-enumerators of mutually dual linear codes C, $C^{\perp} \subset Mat_{n,s}(F_q)$ are related by

$$T(C^{\perp} \mid Z_1,\ldots,Z_n) = \frac{1}{|C|}T(C \mid \Theta_s Z_1,\ldots,\Theta_s Z_n).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MacWilliams Relations

Theorem

The H-enumerator of mutually dual linear codes C, $C^{\perp} \subset Mat_{n,s}(F_q)$ are related by

$$H(C^{\perp} | Z) = \frac{1}{|C|} H(C | \Theta_s Z)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MacWilliams Relations

Hence by expanding the amount of information in the weight enumerator MacWilliams relations can be found!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

The minimum weight of a code C is given by

$$\rho(C) = \min\{\rho(\Omega, \Omega') \mid \Omega, \Omega' \in C, \ \Omega \neq \Omega'\}.$$

The minimum weight of a code C is given by

$$\rho(\mathcal{C}) = \min\{\rho(\Omega, \Omega') \mid \Omega, \Omega' \in \mathcal{C}, \ \Omega \neq \Omega'\}.$$

If the code is linear (i.e. \mathfrak{A} is a finite ring and the code is a submodule) then $\rho(\mathcal{C}) = \min\{\rho(\Omega) \mid \Omega \in \mathcal{C}, \}$ where $\rho(\Omega) = \rho(\Omega, \mathbf{0}).$

Singleton Bound

Theorem Let A be any finite alphabet with q elements and let $C \subset Mat_{n,s}(A)$, be an arbitrary code, then

 $|C| \le q^{n-d+1}.$

Singleton Bound

Theorem

Let A be any finite alphabet with q elements and let $C \subset Mat_{n,s}(A)$, be an arbitrary code, then

 $|C| \le q^{n-d+1}.$

Proof.

Mark the first d-1 positions lexicographically. Two elements of C never coincide in all other positions since otherwise the distance between them would be less than d. Hence $|C| \leq q^{n-d+1}$.

Singleton Bound

Corollary Let $C \subset Mat_{n,s}(A)$, where |A| = q, be an arbitrary code consisting of q^k , $0 \le k \le ns$, points. Then

$$\rho(C) \leq ns - k + 1.$$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Corollary Let $C \subset Mat_{n,s}(A)$, where |A| = q, be an arbitrary code consisting of q^k , $0 \le k \le ns$, points. Then

$$\rho(C) \leq ns - k + 1.$$

Naturally, we define a code meeting this bound as a Maximum Distance Separable Code with respect to the ρ metric.

MDS Codes

Theorem (Skriganov) If C is a linear MDS code in $Mat_{n,s}(F_q)$, then C^{\perp} is also an MDS code.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MDR Bound

Theorem

If C is a linear code in $Mat_{n,s}(\mathbb{Z}_k)$ of rank h, then

$$\rho(C) \leq ns - h + 1.$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

MDR Bound

Theorem If C is a linear code in $Mat_{n,s}(\mathbb{Z}_k)$ of rank h, then

$$\rho(C) \leq ns - h + 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Codes meeting this bound are called MDR codes.

MDR Codes

Theorem

Let C_1, C_2, \ldots, C_r be linear codes in $Mat_{n,s}(\mathbb{Z}_{k_1}), \ldots, Mat_{n,s}(\mathbb{Z}_{k_r})$, respectively, where k_1, \ldots, k_r are positive integers with $gcd(k_i, k_j) = 1$ for $i \neq j$. If C_i is an MDR code for all i, then $C = CRT(C_1, C_2, \ldots, C_r)$ is an MDR code.

Let U denote the interval [0,1) and

$$\Delta_{A}^{M} = [\frac{m_{1}}{k^{a_{1}}}, \frac{m_{1}+1}{k^{a_{1}}}) \dots [\frac{m_{n}}{k^{a_{n}}}, \frac{m_{n}+1}{k^{a_{n}}}) \subset U^{n}$$

an elementary box, where $M = (m_1, \ldots, m_n)$ and $A = (a_1, \ldots, a_n)$.

Let U denote the interval [0,1) and

$$\Delta_{A}^{M} = [\frac{m_{1}}{k^{a_{1}}}, \frac{m_{1}+1}{k^{a_{1}}}) \dots [\frac{m_{n}}{k^{a_{n}}}, \frac{m_{n}+1}{k^{a_{n}}}) \subset U^{n}$$

an elementary box, where $M = (m_1, \ldots, m_n)$ and $A = (a_1, \ldots, a_n)$.

Definition

Given an integer $0 \le h \le n$, a subset $D \subset U^n$ consisting of k^h points is called an optimum $[ns, h]_s$ distribution in base k if each elementary box Δ^M_A of volume k^{-h} contains exactly one point of D.

For a point X in $Q^n(k^s)$ define the following matrix which is an element of $Mat_{n,s}(Z_k)$:

$$\Omega\langle X\rangle = (\omega(x_1), \omega(x_2), \dots, \omega(x_n))^T$$

where

$$\omega \langle x \rangle = (\xi_1(x), \xi_2(x), \dots, \xi_s(x))$$

and $x = \sum_{i=1}^{s} \xi_i(x) k^{i-s-1}$.

Theorem

Let C be an optimum distribution in $Q^n(k^s)$ for any k and C its corresponding code then the following are equivalent:

- D is an optimum [ns, λ]_s distribution in base k
- C is an MDS code in the ρ metric in $Mat_{n,s}(Z_k)$.

Codes over $\mathbb{Z}_2\mathbb{Z}_4$ and their Gray Map

Delsarte

Delsarte defines additive codes as subgroups of the underlying abelian group in a translation association scheme.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Delsarte

Delsarte defines additive codes as subgroups of the underlying abelian group in a translation association scheme.

For the binary Hamming scheme, the only structures for the abelian group are those of the form $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, with $\alpha + 2\beta = n$.

Delsarte defines additive codes as subgroups of the underlying abelian group in a translation association scheme.

For the binary Hamming scheme, the only structures for the abelian group are those of the form $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, with $\alpha + 2\beta = n$.

Thus, the subgroups C of $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ are the only additive codes in a binary Hamming scheme.

Gray Map

$$\Phi: \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \longrightarrow \mathbb{Z}_2^n$$

where $n = \alpha + 2\beta$.

Gray Map

$$\Phi: \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \longrightarrow \mathbb{Z}_2^n$$

where $n = \alpha + 2\beta$.

$$\Phi(x,y) = (x,\phi(y_1),\ldots,\phi(y_\beta))$$

for any $\mathbf{x} \in \mathbb{Z}_2^{\alpha}$ and any $\mathbf{y} = (y_1, \dots, y_{\beta}) \in \mathbb{Z}_4^{\beta}$, where $\phi : \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2^{2}$ is the usual Gray map.

Gray Map

$$\Phi: \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \longrightarrow \mathbb{Z}_2^n$$

where $n = \alpha + 2\beta$.

$$\Phi(x,y) = (x,\phi(y_1),\ldots,\phi(y_\beta))$$

for any $\mathbf{x} \in \mathbb{Z}_2^{\alpha}$ and any $\mathbf{y} = (y_1, \dots, y_{\beta}) \in \mathbb{Z}_4^{\beta}$, where $\phi : \mathbb{Z}_4 \longrightarrow \mathbb{Z}_2^{2}$ is the usual Gray map.

The map Φ is an isometry which transforms Lee distances in $\mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$ to Hamming distances in $\mathbb{Z}_2^{\alpha+2\beta}$.

Denote by $wt_H(v_1)$ the Hamming weight of $\mathbf{v}_1 \in \mathbb{Z}_2^{\alpha}$ and by $wt_L(\mathbf{v}_2)$ the Lee weight of $\mathbf{v}_2 \in \mathbb{Z}_4^{\beta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Weights

Denote by $wt_H(v_1)$ the Hamming weight of $\mathbf{v}_1 \in \mathbb{Z}_2^{\alpha}$ and by $wt_L(\mathbf{v}_2)$ the Lee weight of $\mathbf{v}_2 \in \mathbb{Z}_4^{\beta}$.

For a vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2) \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta}$, define the weight of \mathbf{v} , denoted by $wt(\mathbf{v})$, as $wt_H(v_1) + wt_L(v_2)$, or equivalently, the Hamming weight of $\Phi(\mathbf{v})$.

The generator matrix for a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C of type $(\alpha, \beta; \gamma, \delta; \kappa)$:

$${\cal G}_{\cal S} = egin{pmatrix} I_\kappa & T' & 2T_2 & {f 0} & {f 0} \ {f 0} & 2T_1 & 2I_{\gamma-\kappa} & {f 0} \ {f 0} & S' & S & R & I_\delta \end{pmatrix},$$

where T', T_1, T_2, R, S' are matrices over \mathbb{Z}_2 and S is a matrix over \mathbb{Z}_4 .

Inner-Product

The following inner product is defined for any two vectors $\bm{u}, \bm{v} \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2(\sum_{i=1}^{\alpha} u_i v_i) + \sum_{j=\alpha+1}^{\alpha+\beta} u_j v_j \in \mathbb{Z}_4.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Inner-Product

The following inner product is defined for any two vectors $\bm{u}, \bm{v} \in \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2(\sum_{i=1}^{\alpha} u_i v_i) + \sum_{j=\alpha+1}^{\alpha+\beta} u_j v_j \in \mathbb{Z}_4.$$

The *additive dual code* of C, denoted by C^{\perp} , is defined in the standard way

$$\mathcal{C}^{\perp} = \{ \mathbf{v} \in \mathbb{Z}_2^{\alpha} \times \mathbb{Z}_4^{\beta} \mid \langle \mathbf{u}, \mathbf{v} \rangle = 0 \text{ for all } \mathbf{u} \in \mathcal{C} \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

MacWilliams Relations

Define

$$WL(x,y) = \sum_{\mathbf{c}\in C} x^{n-wt_L(\mathbf{c})} y^{wt_L(\mathbf{c})}.$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

MacWilliams Relations

Define

$$WL(x,y) = \sum_{\mathbf{c}\in C} x^{n-wt_L(\mathbf{c})} y^{wt_L(\mathbf{c})}.$$

Theorem Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ code, then

$$WL_{C^{\perp}}(x,y) = \frac{1}{|C|}WL_C(x+y,x-y).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Bounds

Theorem

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(\alpha, \beta; \gamma, \delta; \kappa)$, then

$$\frac{d(\mathcal{C})-1}{2} \leqslant \frac{\alpha}{2} + \beta - \frac{\gamma}{2} - \delta;$$
(15)

$$\left\lfloor \frac{d(\mathcal{C}) - 1}{2} \right\rfloor \leqslant \alpha + \beta - \gamma - \delta.$$
(16)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Separable

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code. If $C = C_X \times C_Y$, then C is called *separable*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Separable

Let C be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code. If $C = C_X \times C_Y$, then C is called *separable*.

Theorem

If C is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code which is separable, then the minimum distance is given by

 $d(\mathcal{C}) = \min \left\{ d(\mathcal{C}_X), d(\mathcal{C}_Y) \right\}.$

MDS

.

We say that a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} is maximum distance separable (MDS) if $d(\mathcal{C})$ meets the bound given in The usual Singleton bound for a code \mathcal{C} of length *n* over an alphabet of size *q* is given by

$$d(\mathcal{C}) \leq n - \log_q |\mathcal{C}| + 1.$$

MDS

We say that a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code C is maximum distance separable (MDS) if d(C) meets the bound given in The usual Singleton bound for a code C of length n over an alphabet of size q is given by

$$d(\mathcal{C}) \leq n - \log_q |\mathcal{C}| + 1.$$

In the first case, we say that C is MDS with respect to the Singleton bound, briefly MDSS. If it meets the second bound, C is MDS with respect to the rank bound, briefly MDSR.

MDSS

Theorem

Let C be an MDSS $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(\alpha, \beta; \gamma, \delta; \kappa)$ such that $1 < |C| < 2^{\alpha+2\beta}$. Then C is either

- (i) the repetition code of type $(\alpha, \beta; 1, 0; \kappa)$ and minimum distance $d(C) = \alpha + 2\beta$, where $\kappa = 1$ if $\alpha > 0$ and $\kappa = 0$ otherwise; or
- (ii) the even code with minimum distance d(C) = 2 and type $(\alpha, \beta; \alpha 1, \beta; \alpha 1)$ if $\alpha > 0$, or type $(0, \beta; 1, \beta 1; 0)$ otherwise.

MDSR

Theorem

Let C be an MDSR $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(\alpha, \beta; \gamma, \delta; \kappa)$ such that $1 < |C| < 2^{\alpha+2\beta}$. Then, either

(i)
$$C$$
 is the repetition code as in (i) of Theorem 3 with $\alpha \leq 1$; or

(ii) C is of type $(\alpha, \beta; \gamma, \alpha + \beta - \gamma - 1; \alpha)$, where $\alpha \le 1$ and $d(C) = 4 - \alpha \in \{3, 4\}$; or

(iii) C is of type
$$(\alpha, \beta; \gamma, \alpha + \beta - \gamma; \alpha)$$
, where $\alpha \le 1$ and $d(C) \le 2 - \alpha \in \{1, 2\}$.